

Depth and Skeleton Associated Action Recognition without Online Accessible RGB-D Cameras

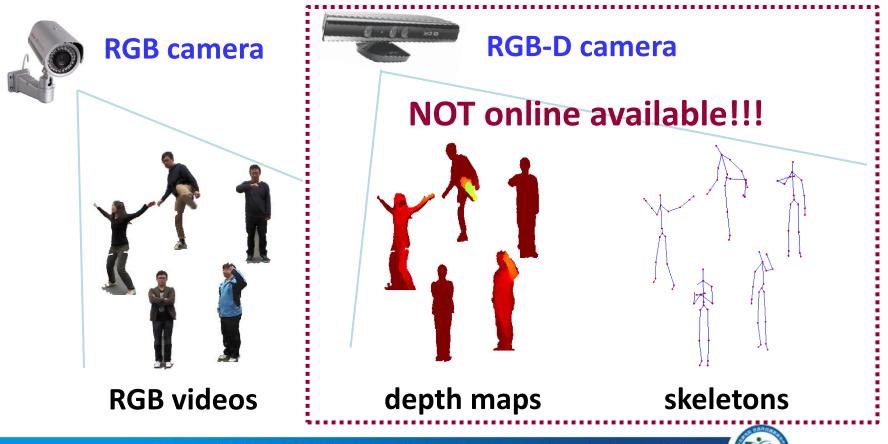
To Appear in CVPR'14

M.-H. Chen

H.-Y. M. Liao

The goal

 Depth and Skeleton Associated Action Recognition without Online Accessible RGB-D Cameras



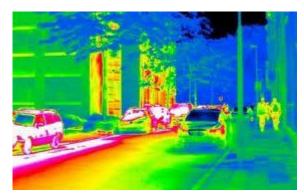
Computer vision with next-generation cameras

- Computer vision
 - > Let computers see, recognize, and interpret the world like humans
- CV techniques are highly adapted to imaging devices
 - Most existing techniques are developed on RGB images
- Recent advances in imaging devices

Their applications

RGB-D: scene understanding

RGB-D: pose estimation & action recognition



Infrared: night vision

Binocular: stereo vision

Research directions with emerging cameras

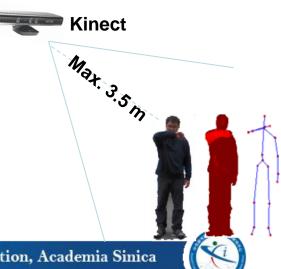
- Design new image descriptors and feature extractors
- Develop new machine learning algorithms
- Initiate new computer vision applications
- Address the limitations of these emerging cameras
 - Short range of the effective distance
 - Expensive cost
 - Long image processing time

Research directions with emerging cameras

- Design new image descriptors and feature extractors
- Develop new machine learning algorithms
- Initiate new computer vision applications
- Address the limitations of these emerging cameras
 - Short range of the effective distance in RGB-D cameras
 - Expensive cost
 - Long image processing time

The problem

- RGB-D cameras better solve CV applications
 - Scene understanding, action recognition, post estimation, object segmentation, ...
- Microsoft Kinect: one of the most popular RGB-D cameras
 > Helpful for action recognition
 > Short effective distance: 1.2 ~ 3.5 meters
- The problem: Less applicability
 Kinect is not online accessible in many real-world applications, e.g., surveillance

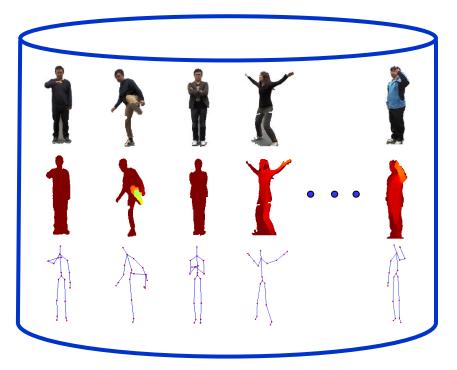


Our idea

- Propose an alternative scenario to address this problem, and illustrate it with the application to action recognition
- In most cases, we focus on recognizing predefined classes of actions in most applications
- Offline collect an auxiliary, multi-modal database by Kinect
 - Unsupervised
 - > At least cover actions of interest
 - RGB videos, depth maps, and skeleton structures
- Depth-associated action recognition with the aid of the auxiliary database

Our idea

• Three-modal auxiliary database



 Can the auxiliary database be an alternative to Kinect, and how?

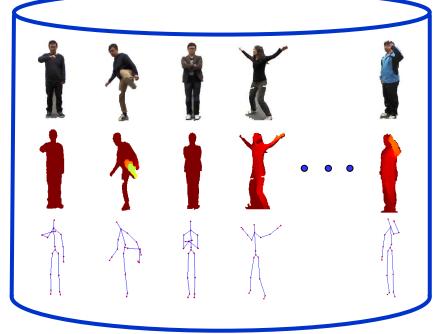
Action Recognition with An Auxiliary Database

- Action recognition as a multi-class classification problem
- RGB-D camera helps, but suffers from the short effective distance
- How to improve the performance if an auxiliary, multi-modal database is available

punch cro

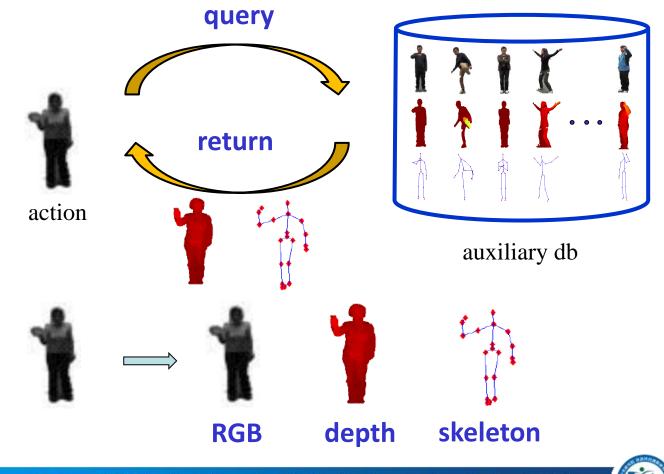
Testing Phase:

cross arm



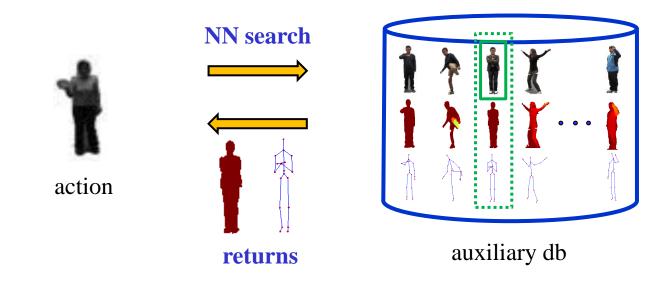
Cross-modal Information Borrowing 1/3

• Fishing 釣 流: cross-modal query expansion



Cross-modal Information Borrowing 2/3

- A naïve way
 - Nearest neighbor search in the RGB domain
 - Borrow the corresponding depth map and skeleton



• It requires a large auxiliary database

Cross-modal Information Borrowing 3/3

The ``Reconstruct & Borrow'' model

$$\simeq \alpha_1 \times \checkmark + \alpha_2 \times \checkmark + \cdots + \alpha_M \times \checkmark$$
Borrowed Features
$$\left\{ \begin{array}{c} \bullet & \alpha_1 \times \checkmark + \alpha_2 \times \checkmark + \cdots + \alpha_M \times \checkmark \\ \bullet & \alpha_1 \times \checkmark + \alpha_2 \times \checkmark + \cdots + \alpha_M \times \checkmark \end{array} \right\}$$

Issues of the reconstruct-&-borrow model

Domain adaptation

Model the variations between the two RGB domains by a linear transformation

- Class-consistent reconstruction coefficients
 Actions of the same class: similar coefficients
 Actions of different classes: dissimilar coefficients
- Noisy data or outliers handling
 - \succ Use $\ell_{2,1}$ norm for residual minimization
- Formulate all the three issues into an optimization problem, and solve it

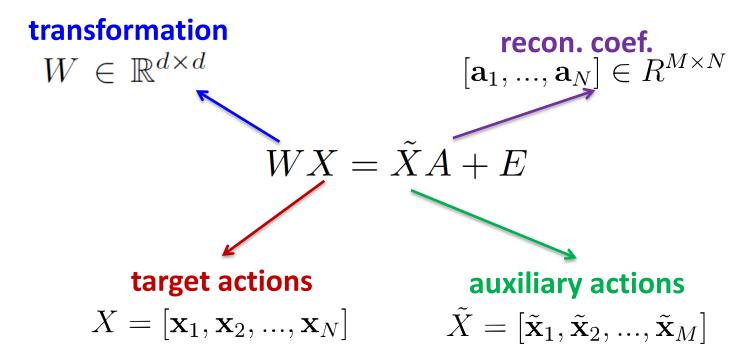
Our approach

- Target database: $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
- Auxiliary database: $\tilde{D} = \{ (\tilde{\mathbf{x}}_i, \tilde{\mathbf{d}}_i, \tilde{\mathbf{s}}_i) \}_{i=1}^M$
- Target database augmentation:

$$D = \{ (\mathbf{x}_i, y_i) \}_{i=1}^N \implies \tilde{D} = \{ (\mathbf{x}_i, \mathbf{d}_i, \mathbf{s}_i, y_i) \}_{i=1}^N$$

- Three stages in our approach
 - Domain adaptation
 - Feature augmentation
 - Feature fusion

• A reconstruction-based domain adaptation model [*Jhuo et al. CVPR'12*]



I.-H. Jhuo, D. Liu, D. T. Lee, and S.-F. Chang. Robust visual domain adaptation with low-rank reconstruction. *In CVPR*, 2012.

A low-rank reconstruction problem

 $\min_{W,A,E} \quad \operatorname{rank}(A) + \lambda \|E\|_{2,1}$ $s.t. \quad WX = \tilde{X}A + E$ $WW^{\top} = I$

- $\geq ||E||_{2,1}$: residual minimization and outlier handling
- \succ rank(A): regularization
- $\succ WW^{\top} = I$: orthonormal constraint

2/4

In our case, the labels of training data are available
 Class-wise rank minimization

$$\min_{V,A,E} \sum_{c=1}^{C} \operatorname{rank}(A^{c}) + \lambda \|E\|_{2,1}$$

s.t. $WX = \tilde{X}A + E$
 $WW^{\top} = I$

Convex relaxation

$$\min_{W,A,E} \quad \sum_{c=1}^{C} \|A^{c}\|_{*} + \lambda \|E\|_{2,1}$$

s.t.
$$WX = \tilde{X}A + E$$
$$WW^{\top} = I$$

The optimization problem can be solved by Augmented Lagrange Multiplier (ALM) method

Algorithm 1: The inexact ALM algorithm for solving constrained optimization problem

Input : Target actions X, Auxiliary actions \tilde{X} , Parameter λ ; Initialize: $E = 0, W = I, A = (\tilde{X}^{\top} \tilde{X})^{-1} \tilde{X}^{\top} W X, U = 0, V = 0, \mu = 10^{-3}$; while not converged do 1. Update F by $F^c = \arg \min_{F^c} \frac{1}{\mu} \|F^c\|_* + \frac{1}{2} \|F^c - (A^c + \frac{U^c}{\mu})\|_F^2$, for c = 1, 2, ..., C; 2. Update W by $W = (\tilde{X}A + E - \frac{V}{\mu})X^{\top}(XX^{\top})^{-1}$; 3. $W \leftarrow \operatorname{orthogonal}(W)$;

- 4. Update *E* by $E = \arg \min_E \frac{\lambda}{\mu} ||E||_{2,1} + \frac{1}{2} ||E (WX \tilde{X}A + \frac{V}{\mu})||_F^2$;
- 5. Update A by $A = (I + \tilde{X}^{\top} \tilde{X})^{-1} [\tilde{X}^{\top} (WX E) + \frac{1}{\mu} (\tilde{X}^{\top} V U) + F];$
- 6. Update the Lagrange multipliers: $U = U + \mu(A F), V = V + \mu(WX \tilde{X}A E);$
- 7. Update the penalty parameter μ by $\mu = 1.2\mu$;
- 8. Check convergence conditions: $A F \longrightarrow 0$ and $WX \tilde{X}A E \longrightarrow 0$;

Feature augmentation

 For each target action x in either training or testing set, we seek its reconstruction coefficients by

$$\boldsymbol{\alpha} = \arg\min_{\boldsymbol{\alpha}} \|W\mathbf{x} - \tilde{X}\boldsymbol{\alpha}\|^2 + \gamma \|\boldsymbol{\alpha}\|^2$$

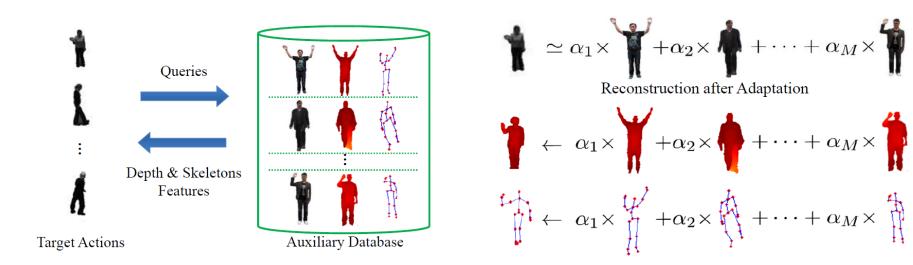
Closed-form solution

$$\boldsymbol{\alpha} = (\tilde{X}^{\top} \tilde{X} + \gamma I)^{-1} \tilde{X}^{\top} W \mathbf{x}$$

- Feature augmentation $\mathbf{x}\mapsto (\mathbf{x},\mathbf{d},\mathbf{s})$ by coefficient sharing
 - \succ Augmented depth map: $\mathbf{d} \leftarrow [\tilde{\mathbf{d}}_1 \cdots \tilde{\mathbf{d}}_M] \boldsymbol{\alpha}$
 - ightarrow Augmented skeleton: $\mathbf{s} \leftarrow [ilde{\mathbf{s}}_1 \cdots ilde{\mathbf{s}}_M] oldsymbol{lpha}$
 - For x, how its depth map and skeleton is augmented is the same as how it RGB features are reconstructed

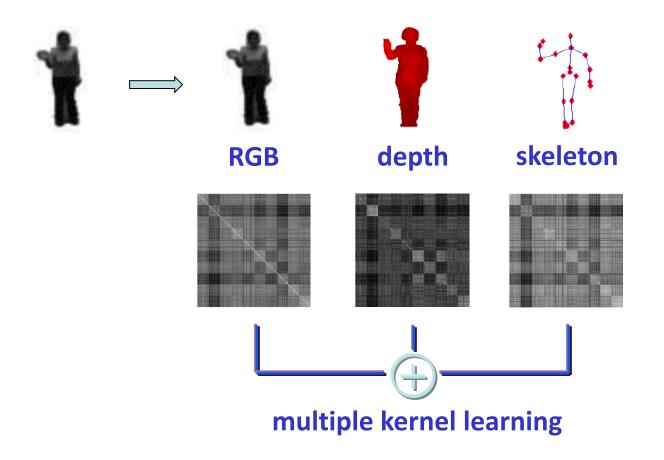
Feature augmentation

2/2



Feature fusion by multiple kernel learning

• Each action is augmented with two borrowed features



Experiments

Three benchmarks of action recognition

	IXMAS	i3DPost	UIUC-1
# classes	11	8	14
# angles of view	3	2	1

- A common auxiliary database
 - Captured by Microsoft Kinect
 - RGB videos
 - Depth maps
 - Skeleton structures

Auxiliary database

10 actors, 40 types of actions, 2 views ullet

punch

check-watch

pick-up

turn-around

jump-forward jump-jack

leg-curl

24

walk-around

kick

arm-curl	arm-swing

side

cross-arms

push-up

raise-one-hand

crawling

point

drink-water

rod-swing

throw

golf-swing jump-from-sit-up jump-in-place

Research Center for Information Technology Innovation, Academia Sinica

get-up

scratch-head

Video preprocessing and feature representations

- RGB video preprocessing
 - > Background estimation [*Tang et al. TMM'12*]
 - > Background subtraction [Barnich et al. TIP'11]
- RGB videos
 - > 3D HOG [Weinland et al. ICCV'07]
- Depth maps
 - > Spatial-temporal local binary patterns [Zhao et al. TPAMI'07]
- Skeleton structures
 - > The Fourier temporal pyramid [*Wang et al. CVPR'12*]

Baselines

• RGB

> An SVM classifier that works on $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$

KSDA (kernel semi-supervised discriminant analysis)
 ➤ Supervised learning on D = {(x_i, y_i)}^N_{i=1}

 \succ Manifold regularization on $\tilde{D} = { \tilde{\mathbf{x}}_i }_{i=1}^M$

• 1NN-Bor

> The naïve way for fishing

• Bor-DEP & Bor-SKE

> An SVM classifier that works on $D = \{(\mathbf{d}_i, y_i)\}_{i=1}^N$

• Ours

> MKL on augmented dataset $D = \{(\mathbf{x}_i, \mathbf{d}_i, \mathbf{s}_i, y_i)\}_{i=1}^N$

LOAO (leave-one-actor-out) cross validation

Method	Ours: d+s	Ours: d	Ours: s	RGB	Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[31]	
Accuracy	89.1	81.6	88.5	78.6	51.2	82.6	80.6	80.3	87.7	
Table 1. Recognition rates $(\%)$ by different approaches on IXMAS dataset.										
Method	Ours: d+s	Ours: d	Ours: s	RGB	Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[12]	
Accuracy	88.3	84.4	87.9	82.0	57.8	80.1	82.8	83.2	84.9	
		Table 2. R	ecognition rat	es (%) by di	fferent approac	ches on i3DPos	st dataset.			
Method	Ours: d+s	Ours: d	Ours: s	RGB	Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[11]	

Table 3. Recognition rates (%) by different approaches on UIUC-1 dataset.

• LOAO (leave-one-actor-out) cross validation

Method	Ours: d+s	Ours: d	Ours: s	RGB	Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[31]
Accuracy	89.1	81.6	88.5	78.6	51.2	82.6	80.6	80.3	87.7
		Table 1. R	ecognition rates	(%) by d	ifferent approad	ches on IXMA	S dataset.		
Method	Ours: d+s	Ours: d	Ours: s	RGB	Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[12]
Accuracy	88.3	84.4	87.9	82.0	57.8	80.1	82.8	83.2	84.9
		Table 2. R	ecognition rates	(%) by d	ifferent approac	ches on i3DPos	st dataset.		
Method	Ours: d+s	Ours: d	Ours: s	RGB	Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[11]
Accuracy	98.7	93.6	98.7	92.1	74.2	95.0	94.3	92.4	99.6
Table 3. Recognition rates $(\%)$ by different approaches on UIUC-1 dataset.									

• RGB vs. the state-of-the-art systems

[31] Wu et al. CVPR'11 [12] Iosifidis et al. TNNLS'12 [11] Hernandez et al. Exp. Sys.'13

• LOAO (leave-one-actor-out) cross validation

Method	Ours: d+s	Ours: d	Ours: s	RGB	Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[31]
Accuracy	89.1	81.6	88.5	78.6	51.2	82.6	80.6	80.3	87.7
		Table 1. R	ecognition rates	(%) by c	ifferent approac	ches on IXMAS	dataset.		
Method	Ours: d+s	Ours: d	Ours: s	RGB	Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[12]
Accuracy	88.3	84.4	87.9	82.0	57.8	80.1	82.8	83.2	84.9
Table 2. Recognition rates $(\%)$ by different approaches on i3DPost dataset.									
Method	Ours: d+s	Ours: d	Ours: s	RGB	Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[11]
Accuracy	98.7	93.6	98.7	92.1	74.2	95.0	94.3	92.4	99.6
Table 3. Recognition rates $(\%)$ by different approaches on UIUC-1 dataset.									

- RGB vs. KSDA
- RGB vs. 1NN-Bor

LOAO (leave-one-actor-out) cross validation

Method	Ours: d+s	Ours: d	Ours: s	RGB		Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[31]
Accuracy	89.1	81.6	88.5	78.6		51.2	82.6	80.6	80.3	87.7
Table 1. Recognition rate					iff	erent approac	thes on IXM	AS dataset.		
Method	Ours: d+s	Ours: d	Ours: s	RGB		Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[12]
Accuracy	88.3	84.4	87.9	82.0		57.8	80.1	82.8	83.2	84.9
Table 2. Recognition rates				(%) by d	iff	erent approac	thes on i3DP	ost dataset.		
Method	Ours: d+s	Ours: d	Ours: s	RGB		Bor-DEP	Bor-SKE	KSDA	1NN-Bor	[11]
Accuracy	98.7	93.6	98.7	92.1		74.2	95.0	94.3	92.4	99.6
	Table 3. Recognition rates $(\%)$ by different approaches on UIUC-1 dataset.									

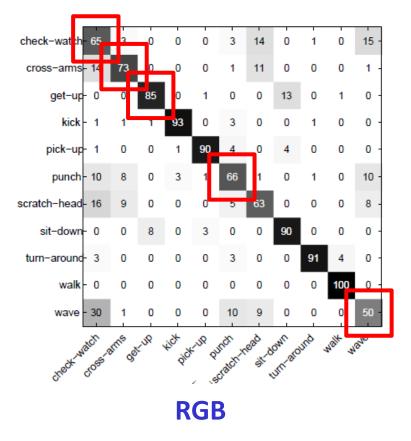
• RGB vs. Bor-DEP

RGB vs. Bor-SKE

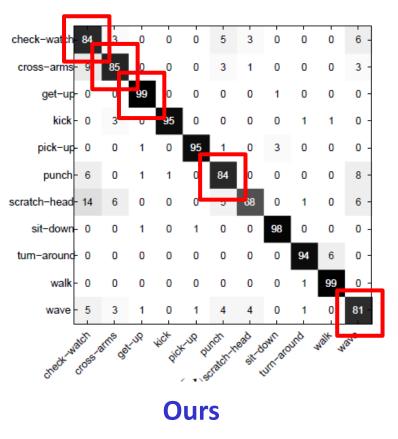
• RGB vs. Ours

	IXMAS	i3DPost	UIUC-1
RGB	78.6%	82.0%	92.1%
Ours (RGB + DEP + SKE)	89.1%	88.3%	99.4%

- Performance gains are between 7% ~ 10%
 - Appropriate depth and skeleton features are retrieved
 - MKL determines the effective combinations of features



Confusion table on IXMAS dataset



Conclusions

- Develop new CV techniques with emerging cameras
- A new problem and its solution for addressing the short effective distances of RGB-D cameras
- Fishing: borrowing information from an offline collected, multi-modal database
 - Perform domain adaptation, feature augmentation and fusion
 - > Lead to remarkable performance boost on three benchmarks
 - It can be applied to other applications, such as gesture recognition and scene understanding

Thank You for Your Attention!

Yen-Yu Lin (林彥宇) Email: yylin@citi.sinica.edu.tw

