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The goal

* Depth and Skeleton Associated Action Recognition
without Online Acce55|ble RGB-D Cameras
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Computer vision with next-generation cameras

* Computer vision

» Let computers see, recognize, and interpret the world like humans

* CV techniques are highly adapted to imaging devices

» Most existing techniques are developed on RGB images

* Recent advances in imaging devices

Binocular

High-speed Lightfield Infrared
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Their applications

RGB-D: scene RGB-D: pose estimation
understanding & action recognition
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Research directions with emerging cameras

* Design new image descriptors and feature extractors
* Develop new machine learning algorithms

* Initiate new computer vision applications

Address the limitations of these emerging cameras
» Short range of the effective distance
» Expensive cost

» Long image processing time

Research Center for Information Technology Innovation, Academia Sinica




Research directions with emerging cameras

* Design new image descriptors and feature extractors
* Develop new machine learning algorithms

* Initiate new computer vision applications

Address the limitations of these emerging cameras
» Short range of the effective distance in RGB-D cameras
» Expensive cost

» Long image processing time
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The problem

 RGB-D cameras better solve CV applications

» Scene understanding, action recognition, post estimation,
object segmentation, ...

* Microsoft Kinect: one of the most popular RGB-D cameras
» Helpful for action recognition
» Short effective distance: 1.2 ~ 3.5 meters

= Kinect
* The problem: Less applicability 2,
%
» Kinect is not online accessible "2%,

in many real-world applications,
e.g., surveillance
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Our idea 1/2

* Propose an alternative scenario to address this problem,
and illustrate it with the application to action recognition

* In most cases, we focus on recognizing predefined classes
of actions in most applications

* Offline collect an auxiliary, multi-modal database by Kinect
» Unsupervised
» At least cover actions of interest
» RGB videos, depth maps, and skeleton structures

* Depth-associated action recognition with the aid of the
auxiliary database
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Our idea 2/2

* Three-modal auxiliary database
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k2K

* Can the auxiliary database be an alternative to Kinect, and

\ -

how?
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Action Recognition with An Auxiliary Database

* Action recognition as a multi-class classification problem
* RGB-D camera helps, but suffers from the short effective distance

* How to improve the performance if an auxiliary, multi-mmodal
database is available

Training Phase:

Testing Phase:

3’
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Cross-modal Information Borrowing 1/3

* Fishing 4] /%.: cross-modal query expansion
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Cross-modal Information Borrowing 2/3

* A naive way
» Nearest neighbor search in the RGB domain
» Borrow the corresponding depth map and skeleton

NN search ~ -
= 1T |
- ;, 4 N Y’)TI\.
R : -
returns auxiliary db

* It requires a large auxiliary database
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Cross-modal Information Borrowing 3/3

e The Reconstruct & Borrow’’ model

Borrowed
Features
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Issues of the reconstruct-&-borrow model

* Domain adaptation

» Model the variations between the two RGB domains by a
linear transformation

e (Class-consistent reconstruction coefficients
> Actions of the same class: similar coefficients
> Actions of different classes: dissimilar coefficients

Noisy data or outliers handling
» Use (51 norm for residual minimization

* Formulate all the three issues into an optimization
problem, and solve it
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Our approach

Target database: D = {(x;, )},

Auxiliary database: D = {(x;,d;,s;)} ",

Target database augmentation:
D= {(Xiayz’) i]\il = D — {(Xﬁdivsi?yi) f’il

* Three stages in our approach
» Domain adaptation
» Feature augmentation
» Feature fusion
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Domain adaptation 1/4

* Areconstruction-based domain adaptation model
[Jhuo et al. CVPR’12]

transform;tlgn recon. coef. AN
W e R4 [ay,...,ay] € RY™

"

WX =XA+E

T

target actions auxiliary actions

~

l.-H. Jhuo, D. Liu, D. T. Lee, and S.-F. Chang. Robust visual domain adaptation with low-rank
reconstruction. In CVPR, 2012.
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Domain adaptation 2/4

* Alow-rank reconstruction problem

nin rank(A) + M| E||21

st. WX =XA+E
WWw' =1

» ||E||2,1: residual minimization and outlier handling
» rank(A): regularization

> WW' = I:orthonormal constraint
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Domain adaptation 3/4

* In our case, the labels of training data are available

» Class-wise rank minimization
C

V[r/n/ll% ;rank(A )+ A El|21
st. WX =XA+E
WWw' =1

* Convex relaxation

W, AE

C
min. S A + AlE
c=1

st. WX =XA+E
Ww' =1
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Domain adaptation 4/4

* The optimization problem can be solved by Augmented
Lagrange Multiplier (ALM) method

Algorithm 1: The inexact ALM algorithm for solving constrained optimization problem

Input : Target actions X', Auxiliary actions X . Parameter \:
Initialize: E =0, W =1, A=(X'"X)"' XWX, U=0, V=0, u=10"3;

while not converged do

. Update F by F© = argminpe = || F°|, + 3||F° = (A° + £-)||F, fore = 1,2, .., C;
Update Wby W = (XA + E — %)XT(XXT)_I;

W <« orthogonal(W): i

Update E by E = arg ming %HEHQI +iE-(WX -XA+ %)| a8
Update Aby A = (I + XTX)MXT(WX —E)+ L(XTV - U) + FJ;

Update the Lagrange multipliers: U = U 4+ (A — F),V =V + u(WX — XA - E);
Update the penalty parameter p by 0 = 1.2 i

Check convergence conditions: A — F' — Oand WX — XA - F — 0;

e A Al
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Feature augmentation 1/2

* For each target action x in either training or testing set,
we seek its reconstruction coefficients by

o = arg min |[Wx — Xal|? +7||al|?
(81

* Closed-form solution
o= (XTX 41X TWx

* Feature augmentation x — (x,d,s) by coefficient sharing
> Augmented depth map: d < [d; - - - dy/|
» Augmented skeleton: s < [s; - -S|

» For x, how its depth map and skeleton is augmented is the
same as how it RGB features are reconstructed
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Feature augmentation 2/2
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Feature fusion by multiple kernel learning

* Each action is augmented with two borrowed features

LIS BN

depth skeleton

"

multiple kernel learning

Research Center for Information Technology Innovation, Academia Sinica

22



Experiments

* Three benchmarks of action recognition

| xuas UIUC-1

# classes
# angles of view 3 2 1

* A common auxiliary database
» Captured by Microsoft Kinect
» RGB videos
» Depth maps
» Skeleton structures
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Auxiliary database

e 10 actors, 40 types of actions, 2 views

hand-clap jump-forward jump-jack

stretch-out throw tum-around two-hand-wave

check-watch crawling Cross-arms drink-water get-up golf-swing

R X

pick-up point

push-up rod-swing scratch-head
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Video preprocessing and feature representations

RGB video preprocessing
» Background estimation [Tang et al. TMIM’12]
» Background subtraction [Barnich et al. TIP’11]

RGB videos
» 3D HOG [Weinland et al. ICCV’07]

* Depth maps
» Spatial-temporal local binary patterns [Zhao et al. TPAMI’07]

* Skeleton structures
» The Fourier temporal pyramid [Wang et al. CVPR’12]
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Baselines

* RGB
» An SVM classifier that works on D = {(x;,v:)}2,
* KSDA (kernel semi-supervised discriminant analysis)
> Supervised learning on D = {(x;, y:)}Y,
> Manifold regularization on D = {x,;},
* 1NN-Bor
» The naive way for fishing
* Bor-DEP & Bor-SKE
> An SVM classifier that works on D = {(d;, v;)},
* Ours

> MKL on augmented dataset D = {(x;,d,;,s;, yi)}ir,
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Experimental results

* LOAO (leave-one-actor-out) cross validation

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [ ]

Accuracy 89.1 81.6 88.5 78.6 51.2 82.6 80.6 80.3 87.7
Table 1. Recognition rates (%) by different approaches on IXMAS dataset.

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [12]

Accuracy 88.3 84.4 87.9 82.0 57.8 80.1 82.8 83.2 84.9
Table 2. Recognition rates (%) by different approaches on i3DPost dataset.

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [11]

Accuracy 98.7 93.6 98.7 92.1 74.2 95.0 94.3 92.4 99.6

Table 3. Recognition rates (%) by different approaches on UTUC-1 dataset.
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Experimental results

* LOAO (leave-one-actor-out) cross validation

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [21]

Accuracy 89.1 81.6 88.5 78.6 5H1.2 82.6 80.6 80.3 87.7
Table 1. Recognition rate§ (%) by different approaches on IXMAS dataset.

Method Ours: d+s  Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [12]
Accuracy 88.3 84.4 87.9 82.0 57.8 80.1 82.8 83.2 84.9

Table 2. Recognition rateg (%) by different approaches on i3DPost dataset.

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [11]
Accuracy 98.7 93.6 98.7 92.1 74.2 95.0 94.3 92.4 99.6

Table 3. Recognition rate§ (%) by :Iifferent approaches on UIUC-1 dataset.

* RGB vs. the state-of-the-art systems

[31] Wu et al. CVPR'11 [12] losifidis et al. TNNLS’12 [11] Hernandez et al. Exp. Sys.”13
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Experimental results

* LOAO (leave-one-actor-out) cross validation

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [21]

Accuracy 89.1 81.6 88.5 78.6 51.2 82.6 80.6 80.3 87.7

Table 1. Recognition rate§ (%) by different approaches on IXMAS dataset.

Method Ours: d+s  Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [12]

Accuracy 88.3 84.4 87.9 82.0 57.8 80.1 82.8 83.2 84.9

Table 2. Recognition rateg (%) by different approaches on i3DPos{ dataset.

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [11]

Accuracy 98.7 93.6 98.7 92.1 4.2 95.0 94.3 92.4 99.6

Table 3. Recognition rate§ (%) by jl'fferent approaches on UIUC-]I dataset.

* RGB vs. KSDA
* RGB vs. INN-Bor

Research Center for Information Technology Innovation, Academia Sinica



Experimental results

* LOAO (leave-one-actor-out) cross validation

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [ ]

Accuracy 89.1 81.6 88.5 78.6 51.2 82.6 80.6 80.3 87.7
Table 1. Recognition rate§ (%) by diffprent approaches on IXMHS dataset.

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [12]

Accuracy 88.3 84.4 87.9 82.0 57.8 80.1 82.8 83.2 84.9
Table 2. Recognition rateg (%) by diffprent approaches on i3DPpst dataset.

Method Ours: d+s Ours: d Ours: s RGB Bor-DEP  Bor-SKE KSDA INN-Bor [11]

Accuracy 98.7 93.6 98.7 92.1 74.2 95.0 94.3 92.4 99.6

Table 3. Recognition ratey

(%) by diff

erent approaches on UIU(I,-] dataset.

* RGB vs. Bor-DEP
* RGB vs. Bor-SKE
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Experimental results

* RGB vs. Ours

_ IXMAS _|_i3DPost | _UIUC-1

78.6% 82.0% 92.1%
Ours (RGB + DEP + SKE) 89.1% 88.3% 99.4%

* Performance gains are between 7% ~ 10%
» Appropriate depth and skeleton features are retrieved
» MKL determines the effective combinations of features
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Experimental results

 Confusion table on IXMAS dataset
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Conclusions

* Develop new CV techniques with emerging cameras

* A new problem and its solution for addressing the short
effective distances of RGB-D cameras

* Fishing: borrowing information from an offline collected,
multi-modal database
» Perform domain adaptation, feature augmentation and fusion
» Lead to remarkable performance boost on three benchmarks

» It can be applied to other applications, such as gesture
recognition and scene understanding
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Thank You for Your Attention!

Yen-Yu Lin (}k3 %)
Email: yylin@citi.sinica.edu.tw
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